欧美黄色一级_老牛影视精品_日本不卡在线视频_欧美精品久久一区二区 _baoyu135国产精品免费_狠狠干狠狠久久_一区二区精品视频_精品国产av一区二区三区_www.久久.com_国产人久久人人人人爽

技術文章

Technical articles

當前位置:首頁技術文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時間:2021-06-01點擊次數:3110

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細的文獻,請到中科院一區  影響因子12    感謝所有的科研奉獻者辛勞的付出。

毛片av一区二区| 亚洲成av人在线观看| 日本成人xxx| av日韩电影| 久久久成人av| 婷婷在线观看视频| 丁香网亚洲国际| 免费观看成人在线视频| 欧美videosex性欧美黑吊| 亚洲国产精品网站| 一本大道伊人av久久综合| 亚洲专区一区| 国产经典久久久| 黄色网页在线免费观看| 亚洲国产精品久久精品怡红院| 欧美国产一级片| 久久激情中文| 国产a级黄色大片| 国产高清一区二区三区视频| 精品无人区太爽高潮在线播放| 91麻豆成人精品国产| 青娱乐精品视频在线| 欧美亚洲黄色片| 欧美1—12sexvideos| 国产一区二区黑人欧美xxxx| 亚洲精品久久久久久久久久 | 99免费在线视频观看| 国产免费专区| 91福利在线观看| 日本一区二区三区免费视频| 国内自拍一区| 国产盗摄视频在线观看| 含羞草www国产在线视频| 亚洲欧洲国产伦综合| 亚洲成人一级片| 岛国一区二区在线观看| 色一情一区二区三区| 欧美成人福利| 国产精品久久久久久久久免费| japan乱配videos老少配| 亚洲成人自拍一区| 国产免费无码一区二区视频| 亚洲小说欧美另类婷婷| av磁力番号网| 狂野欧美激情性xxxx欧美| 日韩一区二区三区在线播放| 日韩欧美在线视频一区二区| 一区在线观看免费| 国产精品酒店视频| 在线精品国产| 丰满女人性猛交| 秋霞在线午夜| 欧美二区乱c黑人| 又长又粗又大又爽| 婷婷成人激情在线网| 国产小视频在线观看免费| 一区二区国产在线观看| 欧美 日韩 亚洲 一区| 国产不卡网站| 国产福利精品在线| bt电影在线| 7777精品伊人久久久大香线蕉| 中文字幕一区二区免费| 国产激情一区二区三区桃花岛亚洲| 爽爽爽在线观看| 韩国精品福利一区二区三区| 国产欧美日韩综合一区在线观看| 久青青在线观看视频国产| 亚洲欧美精品在线| 欧美另类69xxx| 亚洲一本大道在线| 97人人澡人人爽人人模亚洲| 麻豆精品在线看| 亚洲第一天堂久久| 伊人精品一区| 亚洲日本无吗高清不卡| 1234区中文字幕在线观看| 98精品国产自产在线观看| 99re热在线观看| 欧美一区二区三区在线| 亚洲精品人妻无码| 国产精品麻豆一区二区| 国产精品免费人成网站酒店| 校园春色综合网| 好男人www社区| 国产精品xxxav免费视频| 久久亚洲免费| 欧美性video| 欧美一级视频在线观看| 日本不卡1区2区3区| 亚洲精品99999| 欧美又粗又硬又大久久久| 亚洲高清久久久| 波多野结衣mp4| gogo大胆日本视频一区| 黄色片网站免费| 国产精品久久久免费| 中文字幕av专区| 精品中文字幕一区二区三区av| 亚洲三区在线观看| 成人日韩在线| 国产福利久久| 影音先锋男人资源在线| 秋霞成人午夜鲁丝一区二区三区| 爱爱免费视频网站| 亚洲欧洲高清在线| 日本jizzcom| 欧美一区国产二区| 天堂中文在线www| 偷拍亚洲欧洲综合| 国产精品亚洲lv粉色| 中文字幕av资源一区| 久久亚洲AV无码| 国产成人精品亚洲午夜麻豆| 亚洲午夜久久久久久久国产| 久久亚洲不卡| 在线天堂www在线国语对白| 欧美三区视频| 最新国产黄色网址| 99视频精品全部免费在线视频| a级黄色一级片| 欧美变态挠脚心| 黄色污污在线观看| 亚洲性视频在线| 国产免费色视频| 国产精品一区二区三区www| 欧美一区二区三区电影在线观看| 欧美黑人疯狂性受xxxxx野外| 成人羞羞视频免费| 99riav视频在线观看| 91视频网页| heyzo在线欧美播放| 91免费综合在线| 日本在线观看大片免费视频| 国产在线观看一区二区三区| 成人欧美在线| 国产在线久久久| 性国产高清在线观看| 成人啪啪免费看| 污网站在线免费看| 亚洲自拍偷拍视频| 国产白丝在线观看| 成人欧美一区二区三区黑人免费| 蜜桃av.网站在线观看| 国产精品v欧美精品∨日韩| 免费成人在线电影| 国产一区二区视频在线免费观看| 欧美一级鲁丝片| 精品欧美日韩| 欧美日一区二区三区| 欧美系列一区| 精品国产伦一区二区三区观看说明| 亚洲欧洲精品一区二区| 欧美区一区二区| 污污污污污污www网站免费| 日韩最新在线| 无罩大乳的熟妇正在播放| 九一国产精品| 国产区二区三区| 欧美日韩视频| 999精品免费视频| 免费国产亚洲视频| 性欧美疯狂猛交69hd| av在线不卡免费看| 中文字幕亚洲乱码熟女1区2区| 国产精品视频一二三| 亚洲图片小说视频| 精品成人在线视频| 同性视频网站免费男| 欧美一区二区人人喊爽| 美女福利视频导航| 色婷婷综合成人av| 三级在线观看| 国产精品露脸自拍| 电影在线观看一区| 欧美一二三区| 福利电影一区| 91av在线免费播放| 极品av少妇一区二区| 国产国语老龄妇女a片| 毛片av一区二区三区| 欧美成人免费观看视频| 中文字幕免费一区| 精品国产无码AV| 欧美日韩另类一区| 欧洲有码在线视频| 久久精品成人欧美大片| 国产午夜精品一区理论片| 91久久精品久久国产性色也91 | 美女少妇一区二区| 99精品视频网| 亚洲毛片亚洲毛片亚洲毛片| 99国产精品久久久久| 成人黄色免费网| 狠狠色狠色综合曰曰| 国产美女黄色| 一区二区三区黄色| 毛片在线播放网站| 3d精品h动漫啪啪一区二区| 91精品国产66| 青青草视频在线视频| 91精品国产调教在线观看| 免费a在线观看播放| 成人性生交大片免费看中文网站| japanese国产在线观看| 欧美色videos| 少妇性色午夜淫片aaa播放| 久久精品国产视频| 欧美69xxxx| 欧美连裤袜在线视频| 香蕉久久精品日日躁夜夜躁| 特级黄色片视频| 精品一区二区三区的国产在线播放| 国产特黄大片aaaa毛片| 亚洲www啪成人一区二区麻豆 | 欧美视频13p| 天海翼在线播放| 九九九久久久久久| 久久香蕉一区| 自拍偷拍视频在线| 综合国产在线| www.黄色com| 亚洲日本青草视频在线怡红院| 中文在线资源新版官网| 亚洲视频axxx| 91caoporn在线| 欧美日韩电影一区二区| 欧美日一区二区| 日韩精品卡通动漫网站| 久久久久久亚洲综合影院红桃| 狠狠躁日日躁夜夜躁av| 亚洲国产毛片完整版| 欧美女优在线| 久久国产精品一区二区三区| 国产一区99| 色一情一交一乱一区二区三区| 欧美—级在线免费片| 中文字幕第八页| 北条麻妃久久精品| 搞黄网站在线看| 国产爆乳无码一区二区麻豆| 日韩午夜精品| 91精品国产乱码久久久张津瑜| 欧美性精品220| 中文字幕免费中文| 成人观看高清在线观看免费| 2021年精品国产福利在线| 丰满少妇一区二区三区专区| youjizz国产精品| 免费观看毛片网站| 国产一区二区三区三区在线观看 | 欧美高清无遮挡| 中文在线资源| 中文字幕无码不卡免费视频| 国内精品久久久久影院薰衣草| 一级做a爱片性色毛片| 欧美xxxxxxxx| 国产黄色片在线播放| 亚欧洲精品在线视频免费观看| 午夜视频一区| 国产在线观看99| 欧美丝袜丝交足nylons| 91短视频在线观看| 激情小说网站亚洲综合网| 久久影视一区| 真实国产乱子伦对白在线| 色94色欧美sute亚洲线路二| 天天插天天狠天天透| 国产一区精品视频| 小处雏高清一区二区三区| 欧美精品久久久久性色| 在线看一区二区| 三级网站在线| 欧美日韩一区二区三| 亚洲欧美综合| 日本三级小视频| 日韩欧美一区二区久久婷婷| 免费黄网站在线观看| 一区在线电影| 天堂va蜜桃一区二区三区| 91精品国自产| 亚洲人午夜色婷婷| yellow字幕网在线| 91色国产在线| 久久亚区不卡日本| 国产欧美日韩第一页| 国产va免费精品高清在线观看| 中文字幕一区二区三区四区久久 | 嫩草影院一区二区| 久久精品国产69国产精品亚洲| 亚洲成人人体| 91丨porny丨九色| 中文字幕中文在线不卡住| 成年女人免费v片| 444亚洲人体| 伊人久久大香线蕉综合四虎小说 | 国产精品一区专区| www.中文字幕.com| 欧美亚洲成人xxx| 加勒比久久高清| 天堂网中文在线观看| 欧美色图天堂网| 91精品专区| 日韩少妇内射免费播放18禁裸乳| 国产不卡在线播放| 欧美色图自拍| 国产精品久在线观看| 欧美日韩在线播放视频| 国产精品7777| 亚洲变态欧美另类捆绑| 国产黄色大片在线观看| 第一区免费在线观看| 国产精品欧美久久久久一区二区 | 国产伦精品一区二区三区免费视频 | 91国在线产| 95av在线视频| 亚洲a一区二区三区| 国产精品熟女视频| 一本一本久久a久久精品综合小说 一本一本久久a久久精品牛牛影视 | 亚洲无线码在线一区观看| 三上悠亚国产精品一区二区三区| 久久av一区二区三| 亚洲国产cao| 色资源在线观看| 精品免费久久久久久久| 国产成a人亚洲| 国产91九色蝌蚪| 国产精品露出视频| 亚洲在线国产日韩欧美| 亚洲欧美激情另类| 26uuu另类亚洲欧美日本老年| 女人av一区| 草久视频在线观看| 亚洲图片制服诱惑| 91精品福利观看| 美国精品一区二区| 欧美一级欧美一级在线播放| 超碰中文在线| 极品白嫩的小少妇| 色哟哟一区二区在线观看 | 国产精品网站一区| 国产主播色在线| 法国空姐在线观看免费| 成人免费看的视频| 免费尤物视频| 欧洲精品亚洲精品| 国产另类ts人妖一区二区| free欧美性| 麻豆精品视频| 国内一区二区在线| 91精品国产91久久久久久三级| 国内精品视频在线播放| 蜜桃久久av一区| 欧美性猛交99久久久久99| 97欧洲一区二区精品免费| 午夜在线观看免费一区| 影音先锋中文字幕在线| 91视频九色网站| 亚洲欧美日韩在线观看a三区 | sese在线视频| 国产精品自在自线| 欧美日韩国产丝袜美女| 激情影院在线观看| 欧美污在线观看| 91久久国产综合久久| 青春草视频在线| jizz欧美性20| 日韩欧美中文字幕精品| 亚洲日本网址| 亚洲二区在线播放| 亚洲性生活视频| 精品午夜电影| 久久这里只有精品9| 91国产美女在线观看| 91tv精品福利国产在线观看| 欧美一区二区三区激情| 成人春色激情网| 日韩和欧美一区二区三区| 国产久草在线| 视频一区二区在线| 99精品视频中文字幕| 麻豆免费网站| 各处沟厕大尺度偷拍女厕嘘嘘| 亚洲精品高清视频在线观看| 在线看av的网址| 中国特级黄色大片| 日韩一卡二卡三卡国产欧美| 777午夜精品电影免费看| 69av视频在线| 久久韩剧网电视剧| 日本一区二区三区视频| 亚洲成人精品女人久久久| 成人中心免费视频| 奇米色777欧美一区二区| 嫩草影院懂你的影院| 久久久久久久免费视频| 综合自拍亚洲综合图不卡区| 91社区在线| 中国av免费看| 日韩电影在线观看永久视频免费网站|